UV light from ambient environment increases the Si_3N_4 etch rate in XeF₂ etching

Mohammad J. Bereyhi¹

¹Institute of Physics (IPHYS), Swiss Federal Institute of Technology Lausanne (EPFL)

Releasing mechanical structures is a fundamental step in MEMS processing. Given the wide usage of silicon nitride (Si_3N_4) on silicon (Si) carrier due to high stress and high mechanical Q factors, high etching selectivity between Si_3N_4 and Si is very crucial for the release process. Here we demonstrate that UV light from ambient light sources in a cleanroom environment (EPFL - CMi) can increase the etch rate of Si_3N_4 using XeF₂ therefore reduce the selectivity to the substrate (Si). By blocking the top window of the XeF₂ etching chamber and blocking the light, we see an enhancement by a factor of 3 in the selectivity between Si_3N_4 and Si.

Keywords: Si₃N₄; XeF₂; Dry etching; MEMS

We use an in-house XeF_2 etching chamber with 3 pulses of 2.5 Torr each lasting for 30 seconds. We measure the Si_3N_4 thickness before and after this process using film optical interferometry tool ("FilMetric") once with the top lid of the XeF_2 chamber covered with aluminum foil (blocking the light completely), and once with leaving the top lid uncovered. The selectivity between Si and Si_3N_4 was then measured and compared for both cases. The $Si:Si_3N_4$ selectivity is 19:1 for the case with light exposure present inside the etching chamber, compared to 61:1 when the top lid was covered therefore no UV light exposure.

This method can enable release of Si_3N_4 on Si mechanical structures with better performance and lower etching of the active structure. This effect has been observed and used in 3D UV enhanced lithography by Sugano et al.

This method can also be used according to Sugano et al. to enhance selectivity of SiO_2 over Si and therefore can be potentially used to enhance surface quality of optical microdisk and microtoroid cavities, given the simplicity of the modification that only requires covering any light exposure inside the XeF₂ etching chamber.